Công thức lượng giác mở rộng
Cách học thuộc nhanh Bảng công thức lượng giác bằng thơ, “thần chú”
Đối với học sinh, việc học và nhớ Bảng công thức lượng giác là yếu tố quan trọng khi giải toán. Dưới đây là hệ thống lại Bảng giá trị lượng giác cơ bản và nâng cao cùng với cách học thuộc công thức lượng giác bằng thơ, thần chú.
- Shadow Knights Idle RPG Mod v35 Full tiền (Test OK)
- 20:20 ý Nghĩa Là Gì? Thông điệp Vũ Trụ Nhắn Gửi đến Bạn
- Review Minh Châu Rực Rỡ: Phim Thái nhất định phải xem trong tháng 6 này
- T1 hoàn tất đội hình Valorant với bản hợp đồng của Seven
- Cách xử lý khi rốn trẻ sơ sinh có mủ và cách vệ sinh rốn trẻ sơ sinh có mủ
Bảng công thức lượng giác gồm các công thức cơ bản và các công thức biến đổi nâng cao, công thức nghiệm của phương trình lượng giác cơ bản.
Bạn đang xem bài: CÔNG THỨC LƯỢNG GIÁC
Công thức lượng giác của các cung liên quan đặc biệt
Công thức lượng giác cơ bản và công thức cộng
Công thức nhân đôi, nhân ba và công thức hạ bậc
Công thức biến đổi tích thành tổng, tổng thành tích
Công thức nghiệm của phương trình lượng giác cơ bản
Cách học thuộc các công thức lượng giác bằng thơ
Công thức CỘNG trong lượng giác
Cos + cos = 2 cos cos
cos trừ cos = trừ 2 sin sin
Sin + sin = 2 sin cos
sin trừ sin = 2 cos sin.
Sin thì sin cos cos sin
Cos thì cos cos sin sin “coi chừng” (dấu trừ).
Tang tổng thì lấy tổng tang
Chia một trừ với tích tang, dễ òm.
HÀM SỐ LƯỢNG GIÁC
Bắt được quả tang
Sin nằm trên cos (tan@ = sin@:cos@)
Cotang dại dột
Bị cos đè cho. (cot@ = cos@:sin@)
Cách 2:
Bắt được quả tang
Sin nằm trên cos
Côtang cãi lại
Cos nằm trên sin!
GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG ĐẶC BIỆT
Cos đối, sin bù, phụ chéo, khác pi tan
Cosin của 2 góc đối bằng nhau; sin của 2 góc bù nhau thì bằng nhau; phụ chéo là 2 góc phụ nhau thì sin góc này = cos góc kia, tan góc này = cot góc kia; tan của 2 góc hơn kém pi thì bằng nhau.
CÔNG THỨC LƯỢNG GIÁC NHÂN BA
Nhân ba một góc bất kỳ,
sin thì ba bốn, cos thì bốn ba,
dấu trừ đặt giữa 2 ta, lập phương chỗ bốn,
… thế là ok.
Công thức gấp đôi:
+Sin gấp đôi = 2 sin cos
+Cos gấp đôi = bình cos trừ bình sin
= trừ 1 + 2 lần bình cos
= + 1 trừ 2 lần bình sin
+Tang gấp đôi
Tang đôi ta lấy đôi tang (2 tang)
Chia 1 trừ lại bình tang, ra liền.
Cách nhớ công thức: tan(a+b)=(tan+tanb)/1-tana.tanb
tan một tổng 2 tầng cao rộng
trên thượng tầng tan + tan tan
dưới hạ tầng số 1 ngang tàng
dám trừ một tích tan tan oai hùng
CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TÍCH THÀNH TỔNG
Cos cos nửa cos-+, + cos-trừ
Sin sin nửa cos-trừ trừ cos-+
Sin cos nửa sin-+ + sin-trừ
CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TỔNG THÀNH TÍCH
sin tổng lập tổng sin cô
cô tổng lập hiệu đôi cô đôi chàng
còn tan tử + đôi tan (hoặc là: tan tổng lập tổng 2 tan)
một trừ tan tích mẫu mang thương sầu
gặp hiệu ta chớ lo âu,
đổi trừ thành + ghi sâu vào lòng
Một phiên bản khác của câu Tan mình + với tan ta, bằng sin 2 đứa trên cos ta cos mình… là
tanx + tany: tình mình + lại tình ta, sinh ra 2 đứa con mình con ta
tanx – tan y: tình mình hiệu với tình ta sinh ra hiệu chúng, con ta con mình
CÔNG THỨC CHIA ĐÔI (tính theo t=tg(a/2))
Sin, cos mẫu giống nhau chả khác
Ai cũng là một + bình tê (1+t^2)
Sin thì tử có 2 tê (2t),
cos thì tử có 1 trừ bình tê (1-t^2).
HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
Sao Đi Học (Sin = Đối / Huyền)
Cứ Khóc Hoài ( Cos = Kề / Huyền)
Thôi Đừng Khóc ( Tan = Đối / Kề)
Có Kẹo Đây ( Cotan = Kề/ Đối)
Sin : đi học (cạnh đối – cạnh huyền)
Cos: không hư (cạnh đối – cạnh huyền)
Tang: đoàn kết (cạnh đối – cạnh kề)
Cotang: kết đoàn (cạnh kề – cạnh đối)
Tìm sin lấy đối chia huyền
Cosin lấy cạnh kề, huyền chia nhau
Còn tang ta hãy tính sau
Đối trên, kề dưới chia nhau ra liền
Cotang cũng dễ ăn tiền
Kề trên, đối dưới chia liền là ra
Sin bù, cos đối, hơn kém pi tang, phụ chéo.
+Sin bù :Sin(180-a)=sina
+Cos đối :Cos(-a)=cosa
+Hơn kém pi tang :
Tg(a+180)=tga
Cotg(a+180)=cotga
+Phụ chéo là 2 góc phụ nhau thì sin góc này = cos góc kia, tg góc này = cotg góc kia.
Công thức tổng quát hơn về việc hơn kém pi như sau:
Hơn kém bội 2 pi sin, cos
Tang, cotang hơn kém bội pi.
Sin(a+k.2.180)=sina ; Cos(a+k.2.180)=cosa
Tg(a+k180)=tga ; Cotg(a+k180)=cotga
*sin bình + cos bình = 1
*Sin bình = tg bình trên tg bình + 1.
*cos bình = 1 trên 1 + tg bình.
*Một trên cos bình = 1 + tg bình.
*Một trên sin bình = 1 + cotg bình.
(Chú ý sin *; cos @ ; tg @ ;cotg * với các dấu * và @ là chúng có liên quan nhau trong CT trên)
Học công thức lượng giác “thần chú”
Sin= đối/ huyền
Cos= kề/ huyền
Tan= đối/ kề
Cot= kề/ huyền
* Thần chú: Sin đi học, Cos không hư, tan đoàn kết, cotan kết đoàn
Hoặc: Sao đi học, cứ khóc hoài, thôi đừng khóc, có kẹo đây!
• Công thức cộng:
Cos(x y)= cosxcosy sinxsiny
Sin(x y)= sinxcosy cosxsiny
* Thần chú: Cos thì cos cos sin sin
Sin thì sin cos cos sin rõ ràng
Cos thì đổi dấu hỡi nàng
Sin thì giữ dấu xin chàng nhớ cho!
Tan(x+y)=
* Thần chú: Tan một tổng hai tầng cao rộng
Trên thượng tầng tan cộng cùng tan
Hạ tầng số 1 ngang tàng
Dám trừ đi cả tan tan oai hùng
Hoặc: Tang tổng thì lấy tổng tang
Chia một trừ với tích tang, dễ òm.
• Công thức biến đổi tổng thành tích:
Ví dụ: cosx+cosy= 2cos cos
(Tương tự những công thức như vậy)
* Thần chú: cos cộng cos bằng 2 cos cos
Cos trừ cos bằng – 2 sin sin
Sin cộng sin bằng 2 sin sin
Sin trừ sin bằng 2 cos sin.
* Tan ta cộng với tan mình bằng sin hai đứa trên cos mình cos ta.
Công thức biến đổi tích thành tổng:
Ví dụ: cosxcosy=1/2[cos(x+y)+cos(x-y)] (Tương tự những công thức như vậy)
* Thần chú: Cos cos nửa cos-cộng, cộng cos-trừ
Sin sin nửa cos-trừ trừ cos-cộng
Sin cos nửa sin-cộng cộng sin-trừ.
• Công thức nhân đôi:
Ví dụ: sin2x= 2sinxcosx (Tương tự những công thức như vậy)
Thần chú: Sin gấp đôi = 2 sin cos
Cos gấp đôi = bình cos trừ bình sin
= trừ 1 cộng hai bình cos
= cộng 1 trừ hai bình sin
Chỉ việc nhớ công thức nhân đôi của cos bằng thần chú trên rồi từ đó có thể suy ra công thức hạ bậc.
Tang gấp đôi=Tang đôi ta lấy đôi tang (2 tang)
Chia 1 trừ lại bình tang, ra liền.
• Hàm số lượng giác và các cung có liên quan đặc biệt:
Ví dụ: Cos(-x)= cosx
Tan( + x)= tan x
* Thần chú: Sin bù, Cos đối,Tang Pi,
Phụ nhau Sin Cos, ắt thì phân chia
Hoặc : Cos đối, sin bù, phụ chéo, hơn kém pi tang .
Bảng giá trị lượng giác một số cung đặc biệt
Về trang chủ: TH Huỳnh Ngọc Huệ
Bài viết thuộc danh mục: Tổng hợp